Simuladores de vuelo: una revisión

  • Luis Carlos Villamil Rico Escuela Militar de Aviación. Bogotá, Colombia.
  • Edna Joydeth Avella Rodríguez Universidad del Valle. Cali, Colombia.
  • Jorge Antonio Tenorio Melo Universidad del Valle. Cali, Colombia
Palabras clave: aeronave, simuladores de vuelo, plataformas de movimiento, FSTD, FAA, EASA

Resumen

Los simuladores de vuelo permiten realizar maniobras de aprendizaje que en una aeronave real no se podría, ya que se pueden analizar desde fallas humanas hasta las de la aeronave. Este artículo presenta el desarrollo de un estado del arte para el proyecto titulado “Desarrollo y construcción de un entrenador de vuelo de la aeronave Cessna T-41 para la Escuela Militar de Aviación Marco Fidel Suárez”, financiado por la “Convocatoria para el apoyo a proyectos CTeI para la investigación formativa de la Fuerza Pública”, desarrollada por el Ministerio de Defensa Nacional. Para el desarrollo del artículo se realizó una revisión documental que contiene la clasificación, la historia, arquitectura, características, ventajas y aplicaciones de los simuladores de vuelo o dispositivos de entrenamiento de vuelo. Como resultado a destacar se obtuvo que el proyecto inicialmente planteado era el desarrollo de un entrenador, pero se logró desarrollar un simulador tipo A con un sistema de movimiento con tres grados de libertad. Se concluye que la información suministrada por este artículo apoya a los conceptos básicos para la realización de un simulador de vuelo, dándole la capacidad a la Fuerza Aérea Colombiana en el desarrollo de este tipo de tecnologías.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Luis Carlos Villamil Rico, Escuela Militar de Aviación. Bogotá, Colombia.

Especialista en investigación educativa, Ingeniero Mecánico, Jefe Sección Investigación Escuela Militar de Aviación. Bogotá, Colombia.

Edna Joydeth Avella Rodríguez, Universidad del Valle. Cali, Colombia.

Maestría en ingeniería con énfasis automatización industrial, ingeniero electrónico, docente

Jorge Antonio Tenorio Melo, Universidad del Valle. Cali, Colombia

Maestría en ingeniería con énfasis en automatización industrial, especialización en ingeniería con énfasis en automatización industrial, ingeniería electrónica, docente

Citas

Aeronáutica Civil. (2015). RAC 24 Dispositivos simuladores para entrenemiento de vuelo. Recuperado de http://www.aerocivil.gov.co/AAeronautica/Rrglamentacion/RAC/Paginas/Inicio.aspx

Aerosimulators. (2009). Flight Training. Recuperado de http://www.superjetinternational.com/media-center/ssj100-fullflight-simulator-in-venice-achieves-easa-certification/

Aguirre, L., y Guarnizo R., J. (2008). Diseño detallado de un simulador de vuelo dinamico. Bogota D. C.: Universidad de San Buenaventura.

Airbus Helicopters. (2015). Dauphin AS365 N3 / N3+ Full Fligh Simulator. Recuperado de https://www.airbushelicopters.com/website/en/press/Realistic%20simulation%20training%20to%20enhance%20safety%20and%20capabilities%20of%20helicopter%20search%20and%20rescue%20missions_1651.html

Allerton, D. J. (2010). The impact of flight simulatión inaerospace. Recuperado de https://www.aerosociety.com/Assets/Docs/Publications/DiscussionPapers/The_impact_of_flight_simulation_in_aerospace.pdf

Almeida, D. (2007). UAV Flight Simulator based on ESA Infrastructure Flight simulation models compliant with SMP standard. Lisboa, Portugal: Universidad Técnica de Lisboa.

Alonso, M. (2006). Diseño de una cabina de vuelo virtual. Barcelona: Universidad Politecnica de Catalunya.

Alonso, M. S. (2006). Diseño de una cabina virtual. España: Universidad Politécnica de Cataluña.

Angelo, J. (2000). The link flight trainer. ASME Landmarks, 12.

Australian Goverment Civil Aviation Safety Authority. (2015). Flight simulators and training devices. Australia: AGCASA.

Barros dos Santos, S., & Oliveira, F. (2011). Longitudinal autopilot controllers test platform hardware in the loop. IEEE International System Conference, 379-386.

Bernard, M. (October, 2012). Real learning throught flight simulatión: The ABcs of ATDs. FAA Saf. Brief, 8-10.

Bosh, M. T. (2011). Diseño de un simulador de helicóptero. España: Universidad Politécnica de Cataluña.

Chih-Hsien, K., Devaney, J., & Chung-Ming, H. (s.f.). The design of a fuzzy-based adaptive digital controller for a three-degreesof- freedom in-parallel actuated manipulator [for flight simulator]. IEEE, 3, 1328-1332.

Chomachar, A. A., & Azizi, S. (2015). Design of nonlinear control loader system for a flight simulator (a dynamic inversion approach. IEEE, 1-11.

Cristofaro, M. (2014). Elements of computational flight dynamics for complete aircraft. Southampton. UK: University of Southampton.

Davliakos, I., & Papadopoulos, E. (2008). Model-based control of a 6-dof electrohydraulic Stewart-Gough platform,. Mech. Mach. Theory, 43(11), 1385-1400.

Dongsu, W., & Hongbin, G. (2007). Adaptive sliding control of six- DOF flight simulator motion platform. Chinese J. Aeronaut, 20(5), 425-433.

Dongsu, W., & Hongbin, G. (October, 2007). Adaptive Sliding Control of Six-DOF Flight Simulator Motion Platform. Chinese Aeronaut, 20(5), 294-304.

Dongsu, W., Hongbin, G., & Peng, L. (2009). Comparative study on dynamic identification of parallel motion platform for a novel flight simulator. IEEE, 2232-2237.

Dummer, G. (1949). Aids to training, the design of radar synthetic training devices for the R.A.F. Proc IEE - Part III Radio Commun, 96(40), 101-115.

EASA. (1 de octubre de 2015). EASA Qualifed FSRDs. Recuperado de https://lisstdis.easa.europa.eu/eqstdis

Education IT. (2017). Sistemas operativos más usados. Centro de capacitación y desarrollo profesional.

Elbit System Ltd. (2011). Aircraft Mission Training Center (MTC).

Federal Aviation Administration. (2014). AC 61-136A. Recuperado de https://www.faa.gov/search/?q=AC+61-136A+-+Federal+Aviation+Administration

Federal Aviation Administration. (2014). Training & Testing. Recuperado de https://www.faa.gov/training_testing/

Flight Safety International Simulation. (2011). Flight Simulation Training Systems. Broken Arrow.

Fountain, P. J. (2002). USA Patente n.º US20030054324A1.

Gohl, F., & Leutenegger, S. (2009). Aerodynamic performance and stability simulation of different flying wing model airplane configurations.

Gusarov, R. (2011). Sukhoi SuperJet. Recuperado de http://www.ruaviation.com/news/2011/11/22/632/

Haward, D. M. (1910). The Sanders “Teacher”. Flight, II(50), 1006- 1007. Recuperado de https://www.flightglobal.com/pdfarchive/view/1910/1910%20-%201009.html

Inaba, Y., Shimada, Y., Uchiyama, K., Abe, K., Ishikawa, Y., Sugimoto, T., & Abe, A. (2006). Development of flight simulator for humanpowered aircraft the road towards a world record. Sice Icase.

Jirgl, M., Boni, J., & Jaolovecky, R. (2015). The identification possibilities of the measured parameters of an aircraft model and pilot behavior model on the flight simulator. IEEE Xplore, 1-5.

Koekebakker, S. (2001). Model Based Control of a Flight Simulator Motion System,. Netherlands: Technische Universiteit Deltf.

Kovacova, J., & Koblen, I. (2012). Selected information on flight simulators - main requirements, categories and their development, production and using for flight crew training in the both Slovak Republic and Czech Republic conditions. Incas Bulletin, 4, 73-86.

Lawn, P. (1998). The Enhancement of a Flight Simulator System with Teaching and Research Applications. Texas: University Concordia.

Lawn, P. (1998). The enhancement of a flight simulator system with teaching and reserarch applications. Canada: University Montreal.

Marodi, A. (2002). An improved evaluation method for airplane simulator motion cueing. University of Pittsburgh.

Mendoza, M., Vivas, V., & Rodríguez, H. (2014). Mechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis. Journal of Applied Research and Technology, 12(3), 370-383.

Microsoft. (2015). Visual C# Language. Recuperado de https://docs.microsoft.com/en-us/dotnet/csharp/getting-started/introduction-to-the-csharp-language-and-the-net-framework

Monsarrat, B., & Gosselin, M. (2003). Workspace analysis and optimal design of a 3-leg 6-DOF parallel platform mechanism. IEEE, 19(6), 954-956.

Muñoz, M. (2012). Manuel de vuelo. Recuperado de www.manualdevuelo. com

NASA. (2012). SimLabs: Advancing the science of flight. Recuperado de http://www.simlabs.arc.nasa.gov

Odegard, R., Milenkovic, Z., & Buttacoli, M. (2014). Model-based GN&C simulation and flight software development for Orion missions beyond LEO. IEEE Aerospace Conference, 1-13.

Odegard, R., Sliwinski, K., King, T., & Hart, J. (2011). Configuring the Orion Guidance, Navigation, and Control flight software for automated sequencing. IEEE Aerospace Conference, 1-13.

Pancoe, E. G. (2002). Motión system for an aircraft flight shmulatur.

Pradipta, J., Klunder, M., Weickgenannt, M., & Sawodry, O. (2013). Development of a pneumatically driven flight simulator Stewart platform using motion and force control. IEEE. doi: 10.1109/AIM.2013.6584085.

Ray, L. P. (2000). Brief history of flight simulation. SimTec, 11-17.

Reddy, B., & Arun, P. (2013). Development of real models for aircraft simulator. IEEE Xplore, 52-53.

Reinholtz, K. (1999). Applying simulation to the development of spacecraft flight software. IEEE Aerospace Conference, 1, 469- 476.

Rodríguez, N. J. (2014). Generalidades de los simuladores de vuelo. Tecnoesufa, 21-28.

Rodríguez, R., Sampaio, R., Aguiar, A., & Buttacoli, M. (2014). FVMS Software-in-the-Loop Flight Simulation Experiments: Guidance, Navigation and Contro. Joint Conference on Robotics, 223-228.

Schmaltz, J. (2010). Flight training simulation. The flight safety multiplie, 21(4), 1-8.

Sizza, J. (2014). Simuladores para entrenamientos en la Fuerza Aérea Colombiana. Ciencia y Poder Aéreo, 9(1), 135-141.

Slob, J. (2008). State-of-the-Art driving simulators, a literature survey. Eindhoven: University of Technology.

Songshan, H., Zongxia, W., & Yaoxing, S. (2015). Fuzzy robust nonlinear control approach for electro-hydraulic flight motion simulator. Chinese J. Aeronaut, 28(1), 294-304.

Statcounter. (2017). Market Share Worldwide. Recuperado de https://statcounter.com/

Tan, C., Chen, W., Van den Boomen, G., & Rauterberg, M. (2010). Application of automation for low cost aircraft cabin simulator. Control Autom Syst.

Virtual Insect Flight Simulator (VIFS): A software testbed for insect flight. (2001). Virtual insect flight simulator (VIFS): a software testIEEE International Conference on Robotics and Automation, 4, 3885-3892.

Vix. (2017). Vix.com. ¿Listo para despegar? Los mejores simuladores de vuelo civiles. Recuperado de https://www.vix.com/es/btg/gamer/62883/listo-para-despegar-los-mejores-simuladores-de-vuelo-civiles

Weingarten, N. (2005). History of in-flight simulation & flying qualities research at calspan. AIAA Journal of Aircraft, 42(2), 290- 298.

X-plane. (2017). FAA-Certified X-Plane. Recuperado de https://www.x-plane.com/pro/certified/

Zazula, A., Myszor, D., Antemijczuk, O., & Cyran, K. (2013). Flight simulators - From electromechanical analogue computers to moderm laboratory of flying. Adv. Sci. Techol, 7(17), 51-55.

Zhang, Y., & Yao, Y. (2009). Virtual insect flight simulator (VIFS): A software testbed for insect flight. International Conference on Measuring Technology and Mechatronics Automation, 841- 844.

Cómo citar
Villamil Rico, L., Avella RodríguezE., & Tenorio Melo, J. (2018). Simuladores de vuelo: una revisión. Ciencia Y Poder Aéreo, 13(2), 138-149. https://doi.org/10.18667/cienciaypoderaereo.606
Publicado: 2018-10-09
Sección
Docencia y Educación